Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Can J Physiol Pharmacol ; 102(1): 42-54, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37523769

RESUMO

The beneficial effects of high-fat low-carbohydrate (HFLC) diets on glucose metabolism have been questioned and their effects on liver metabolism are not totally clear. The aim of this work was to investigate the effects of an HFLC diet under different energy conditions on glucose homeostasis, fatty liver development, and hepatic gluconeogenesis using the isolated perfused rat liver. HFLC diet (79% fat, 19% protein, and 2% carbohydrates in Kcal%) was administered to rats for 4 weeks under three conditions: ad libitum (hypercaloric), isocaloric, and hypocaloric (energy reduction of 20%). Fasting blood glucose levels and total fat in the liver were higher in all HFLC diet rats. Oral glucose tolerance was impaired in isocaloric and hypercaloric groups, although insulin sensitivity was not altered. HFLC diet also caused marked liver metabolic alterations: higher gluconeogenesis rate from lactate and a reduced capacity to metabolize alanine, the latter effect being more intense in the hypocaloric condition. Thus, even when HFLC diets are used for weight loss, our data imply that they can potentially cause harmful consequences for the liver.


Assuntos
Gorduras na Dieta , Fígado Gorduroso , Ratos , Animais , Gluconeogênese , Carboidratos da Dieta/efeitos adversos , Dieta com Restrição de Carboidratos , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/metabolismo , Glicemia/metabolismo , Homeostase , Glucose/metabolismo
2.
J Ethnopharmacol ; 307: 116226, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36739926

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ganoderma lucidum (Curtis) P. Karst., a bioactive mushroom with medicinal properties, is known to exert immunomodulatory, anti-inflammatory, hypocholesterolemic, hypoglycemic, and hepatoprotective effects. AIM OF THE STUDY: In this study, the effects of the G. lucidum fruiting body dry extract (GLE) on human liver (HepG2/C3A) and kidney (786-O) tumor cells and peripheral blood lymphocytes were evaluated. MATERIALS AND METHODS: MTT-based cytotoxicity, trypan blue-based cell viability, comet, and cytokinesis-block micronucleus cytome assays were performed, and the production of reactive oxygen species was evaluated in vitro. RESULTS: GLE was toxic to the tumor cells, decreasing their viability by increasing their production of reactive oxygen species and inducing damage to their DNA. By contrast, only high concentrations of GLE were toxic to lymphocytes and decreased their viability, whereas low concentrations increased lymphocyte viability. Moreover, primary DNA damage was induced by GLE only at the highest concentration tested. CONCLUSIONS: G. lucidum shows potential antitumor effects against cancerous kidney and liver cells, exhibiting cytotoxic and genotoxic activity at low concentrations, whereas the same effects in lymphocytes are mediated only at high concentrations. This mushroom has the potential to be biotechnologically developed into a therapeutic agent for diseases, such as cancer.


Assuntos
Agaricales , Neoplasias Renais , Reishi , Humanos , Espécies Reativas de Oxigênio , Rim , Fígado , Linfócitos
3.
Front Nutr ; 9: 1062116, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704794

RESUMO

Introduction: Protein restriction during lactation can induce metabolic dysfunctions and has a huge impact on the offspring's phenotype later in its life. We tested whether the effects of a maternal low-protein diet (LP) in rats can be transmitted to the F2 generation and increase their vulnerability to dietary insults in adulthood. Methods: Female Wistar rats (F0) were fed either a low-protein diet (LP; 4% protein) during the first 2 weeks of lactation or a normal-protein diet (NP; 23% protein). The female offspring (F1 generation) were maintained on a standard diet throughout the experiment. Once adulthood was reached, female F1 offspring from both groups (i.e., NP-F1 and LP-F1) were bred to proven males, outside the experiment, to produce the F2 generation. Male F2 offspring from both groups (NP-F2 and LP-F2 groups) received a standard diet until 60 days old, at which point they received either a normal fat (NF; 4.5% fat) or a high fat diet (HF; 35% fat) for 30 days. Results: At 90 days old, LPNF-F2 offspring had increased lipogenesis and fasting insulinemia compared to NPNF-F2, without alteration in insulin sensitivity. HF diet caused increased gluconeogenesis and displayed glucose intolerance in LPHF-F2 offspring compared to LPNF-F2 offspring. Additionally, the HF diet led to damage to lipid metabolism (such as steatosis grade 3), higher body weight, fat pad stores, and hepatic lipid content. Discussion: We concluded that an F0 maternal protein restricted diet during lactation can induce a transgenerational effect on glucose and liver metabolism in the F2 generation, making the offspring's liver more vulnerable to nutritional injury later in life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...